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The local interaction of an oblique shock wave with an unseparated turbulent 
boundary layer at a shallow two-dimensional compression corner is described by 
asymptotic expansions for small values of the non-dimensional friction velocity and 
the flow turning angle. It is assumed that the velocity-defect law and the law of the 
wall, adapted for compressible flow, provide an asymptotic representation of the 
mean velocity profile in the undisturbed boundary layer. Analytical solutions for the 
local mean-velocity and pressure distributions are derived in supersonic, hypersonic 
and transonic small-disturbance limits, with additional intermediate limits required 
at distances from the corner that are small in comparison with the boundary-layer 
thickness. The solutions describe small perturbations in an inviscid rotational flow, 
and show good agreement with available experimental data in most cases where 
effects of separation can be neglected. Calculation of the wall shear stress requires 
solution of the boundary-layer momentum equation in a sublayer which plays the 
role of a new thinner boundary hyer but which is still much thicker than the wall 
layer. An analytical solution is derived with a mixing-length approximation, and is 
in qualitative agreement with one set of measured values. 

1. Introduction 
When a turbulent boundary layer at  supersonic speed encounters a two-dimensional 

compression corner, details of the local mean flow are determined by an interaction 
between the boundary layer and an oblique shock wave. If the corner angle is not too 
large, at  most a very small region of mean reversed flow is present. It is observed 
experimentally, for small turning angles, that the shock wave forms at a distance from 
the corner which is small in comparison with the boundary-layer thickness, and the 
initial rise in surface pressure is very steep. Within the boundary layer the shock wave 
is curved, because of the gradient in Mach number, and continuous reflections occur 
because of the mean vorticity. Reflected disturbances reaching the surface typically 
lead to a more gradual pressure increase, which continues for a distance of perhaps 
a few boundary-layer thicknesses, depending on the external-flow Mach number. At 
lower Mach numbers a pressure overshoot has been observed very close to the corner, 
followed by a gradual decrease toward the inviscid-flow value (Roshko & Thomke 
1969). 

In the flow just downstream of the corner the mean pressure gradient and 
acceleration are much larger, in magnitude, than in the undisturbed boundary layer. 
It has therefore been suggested (e.g. Roshko & Thomke 1969; Elfstrom 1972) that, 
if effects of separation are negligible, the mean flow changes in the boundary layer 
might be described approximately by inviscid-flow equations, except in regions very 
close to the corner and very close to the surface downstream of the corner. The 
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accuracy of this approximation has been confirmed by numerical calculation of 
surface pressures by the method of characteristics (Roshko & Thomke 1969; Rosen, 
Roshko & Pavish 1981). In  particular cases these results show close agreement with 
measured values for the gradual part of the pressure increase. The calculations require 
that a starting value for the Mach number be supplied in some way, and there is no 
satisfactory method for predicting the steeper part of the pressure rise. 

The inviscid-flow approximation has been developed as an asymptotic approxim- 
ation for the related problem of the interaction at transonic speeds between an 
unseparated turbulent boundary layer and a normal shock wave, by Melnik & 
Grossman (1974), Adamson & Feo (1975) and Messiter (1980). A review of the 
important ideas, as applied to this and other problems, has been given by Melnik 
(1981). The velocity-defect law and the law of the wall, suitably modified for 
compressible flow, are assumed to provide an asymptotic description of the un- 
disturbed, fully developed, constant-pressure turbulent boundary layer. Near the 
shock wave the changes in Reynolds stresses are of sufficiently high order in most of 
the boundary layer that the largest terms in the pressure can be calculated by solution 
of equations for inviscid rotational flow. Changes in the boundary-layer Reynolds 
stress becomes important in a sublayer which is still much thicker than the viscous 
wall layer (Melnik & Grossman 1974; Adamson & Feo 1975; Adamson & Liou 1980). 
A boundary-layer momentum equation, with a linear inertia term, is to be solved in 
thesublayer, forapressure distribution whichisobtainedfrom the ‘outer’inviscid-flow 
solution. The incompressible flow over a shallow two-dimensional bump has been 
studied in a similar way (Sykes 1980). These turbulent interactions are quite different 
from typical laminar interactions, for which the local pressure distribution is related 
to the change in sublayer displacement thickness, and is therefore obtained by 
solution of the sublayer momentum equation subject to an appropriate pressure- 
displacement condition. The differences arise because of the difference in form of the 
undisturbed velocity profiles for laminar and turbulent boundary layers. 

The present investigation was motivated largely by the work of Roshko & Thomke 
(1969). The purposes are to obtain analytical solutions for the portion of the pressure 
rise which they had calculated numerically, to explore in a systematic way the 
implications of an asymptotic inviscid-flow description at smaller distances from the 
corner, and to attempt a prediction of the surface shear stress, all for unseparated 
flow. Details have been given by Agrawal (1983), and are summarized here. The 
analytical solutions for the pressure are obtained by use of supersonic, hypersonic 
and transonic small-disturbance approximations. Each of these solutions is found by 
taking an ‘outer ’ limit of the equations, with the undisturbed boundary-layer 
thickness as the reference length in the direction normal to the surface. For points 
closer to the corner, it is necessary to study certain ’intermediate ’ limits, by a change 
of variables in the manner described by Bush (1971) for a model equation. A similar 
procedure has been outlined previously for the interaction at transonic speeds with 
a weak incident oblique shock wave (Adamson 1976) or with a weak normal shock 
wave (Messiter 1980, Appendix A). It is noted briefly that the presence of small-scale 
separation may imply a lower limit to the small lengthscales for which the 
intermediate solutions can properly be used. Finally, an approximate solution of a 
sublayer momentum equation is obtained, giving an approximate prediction of the 
surface shear stress. 
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FIGURE 1.  Sketch showing mean-velocity profile, shock wave and reflected waves. 

2. Problem formulation 
A sketch of the mean flow field is shown in figure 1. A fully developed turbulent 

boundary layer, at supersonic speed and high Reynolds number, encounters a shallow 
compression corner, giving rise to a curved shock wave which is reflected continuously 
as it passes through the boundary layer. Coordinates x and y, measured along and 
normal to the undisturbed-flow direction, have been made nondimensional with the 
boundary-layer thickness S just ahead of the corner. Non-dimensional mean-velocity 
components u and v, in the x- and y-directions respectively, are referred to the 
undisturbed external-flow velocity, as are the local sound speed a and its critical value 
a*. The mean values of pressure p ,  density p ,  temperature T and viscosity coefficient 
,u have been non-dimensionalized with the corresponding values in the undisturbed 
flow, where the Mach number is M,.  A parameter B ,  is defined by B2, = M", - 1. 
The other two important parameters are the corner angle e and the non-dimensional 
friction velocity u, = ($cp)i, where Cp is the skin-friction coefficient just ahead of the 
corner. Throughout the following derivations it will be assumed that both e and u, 
are small. Asymptotic expansions are therefore sought for u,+O and e+O. 

The continuity and momentum equations are 

au au i ap a 
ax ay y ~ , a x  a y  pu-+pw-+-- = -- (p(u'v')) + . . . , 

av av 1 ap 
ax a Y  YJe,aY 

pu-+pv-+-- = ...) (2.3) 

where the primes denote fluctuating quantities and the bracket indicates an average. 
Only the terms that will be needed below have been shown. The wall is taken to be 
insulated and the total enthalpy is approximated as being uniform. A perfect gas with 
constant specific heats having ratio y is assumed. The energy equation and equation 
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where the subscript w denotes the wall value. It may also be convenient, especially 
for a transonic approximation, to combine the differential equations in the form 

au av 
(u2-a2)-+uv -+- +(v a )-+ ... = 0. ax c; 3 2- aY 

The flow tangency condition at the ramp surface for x > 0 is 

v(z, 2 tan s) = u(x, x tan E )  tan 8. (2.6) 

The shock-polar equation and the pressure jump across the shock wave are 

uu us - a*2 
v; = (u,-us)2 , (2.7) 

L, 

-ui - u, us + ah2 
Y+l 

Ps-Pu = Y J e m  P u ~ u ( ~ u - ~ s ) ,  (2.8) 

where the subscripts u and s refer to quantities just upstream and downstream of 
the shock wave. The shock-wave shape and the requirements that mass flow and 
tangential velocity be continuous are expressed in the form 

S(X, y) .= 0, Cpq-VS] = 0, [q x VS] = 0, (2.9a, b,  c) 

where q is the non-dimensional velocity vector and the square bracket denotes a jump. 
The undisturbed boundary layer for y = 0(1) is described by the velocity-defect 

law 

where uol(y) has a logarithmic form as y + O ,  In later calculations uol(y) is approximated 
by Coles’ form 

for y < 1, where K x 0.41 is the von KarmAn constant and 17 is Coles’ profile 
parameter; 17 x 0.5 for a flat-plate boundary layer. For very small y, the velocity 
profile is expressed by the law of the wall, in terms of a coordinate yS/S+, where 

= 1 +u,u,,(y), (2.10) 

uol(y) = K-l{lny-17(1 +cosny)} (2.11) 

_ -  a+ Pw@w -- 
S u,Res 

(2.12) 

and Re, is the Reynolds number based on 6 and on quantities in the undisturbed 
external flow. That is, yS/S+ is a coordinate made non-dimensional with a viscous 
length based on the friction velocity and the kinematic viscosity calculated using wall 
values pw,pUw. Expansion of the wall-layer solution for large y S / P  gives 

u - u,fiw{~ln(’)+c}, (2.13) 

where c x 5.0 as for incompressible flow, and u, fiw is a non-dimensional friction 
velocity defined in terms of the density at the wall. 

A simple approximate boundary-layer profile is obtained (van Driest 1951) by use 
of the Prandtl mixing-length approximation 

(2.14) 
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for S+/S -g y < 1, where 7 = -p(u'v'). Since Cb/ay N 0 and therefore 7 N 7, = u,2 in 
this range, (2.14) is easily integrated. A modified form (Maise & McDonald 1968) which 
remains correct for y = 0(1) is 

u = r s in  1 s in-~-+uT~-uo, (y) ) ,  1 I r  r (2.15) 

wherer = {Tw/(Tw - l)};. Equation (2.15)isofteninterpretedasprovidingacorrelation 
between profiles for incompressible and compressible flow. For y = 0(1) ,  expansion 
of (2.15) for uT 4 1 gives the velocity-defect law (2.10). The solution (2.15) should 
also agree with the expansion (2.13) of the wall-layer solution when y6/6+ is large 
but the velocity is still small, i.e. for yS/S+ 9 1 but u,ln (yS/6+) < 1. This condition 
gives a relationship between u, and S/6+ (or Re,) : 

(2Kn ) 1 6  
u,fiw-In- = rsin-1--uTfiW -+c 

K 6' r (2.16) 

3. Outer solutions 
3.1. Supersonic limit 

The simplest description of the local pressure changes, which provides a foundation 
for later refinements, is obtained in a supersonic small-disturbance limit, for e+O with 
M, fixed. This limit leads to a straightforward linearization, since the shock wave 
is weak and, in a first approximation, has slope dx/dy = B,, which is the same as 
the slopes of the outgoing characteristics. The solutions are derived in terms of 
coordinates x and y, and can be regarded as outer solutions; other solutions will be 
needed for small values of x and y. 

For small uT the pressure is expanded in the form 

P-1 = PI(€, Mm) +uTp,(x, y;  6, Mm) + (3.1) 

where p ,  is the pressure in the absence of the boundary layer and u7pz represents 
the largest effect of the boundary layer. For small E ,  p, and p, are expanded as 

(3.2) 

where pll,plz, . . . are functions of M,, andp,,, . . . depend on x, y as well. The constant 
terms have the known inviscid-flow values : 

p1 = Ep,, + @PI, + . . . , p, = €p,, + . . . , 

Expansions of the same form as (3.1) and (3.2), with the same subscript notation, 
can be written for u-u,, v and p-p,. It is convenient to write u, and p, in terms 
of a new coordinate y, which is constant along a mean streamline and equals y at  
the shock wave. That is, pu dy = p,(y,) u,(y,) dy, and 

(3.4) 

u,(yU) = + u T u o l ( Y U ) 7  (3.5) 

P,(Y,) = 1 + (Y- 1 1 @m ur uol(~u) + * * * . (W) 

y, = y--E(x-Bm y)+ ..., 

It can be verified subsequently, as the solutions are being constructed, that the orders 
of magnitude shown in the expansions (3.1) and (3.2) are in fact the orders required 
for satisfying the differential equations and boundary conditions at each step. 

FLM 143 2 
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Assumed forms of expansion are written in advance for conciseness only, both here 
and in the following sections. 

The largest of the variable terms, the terms of order E U ~ ,  are easily shown to satisfy 
inviscid-flow equations. In  the differential equations (2.1)-(2.3), which are written 
in terms of coordinates made non-dimensional with the boundary-layer thickness, the 
largest terms are O(eu,). For example, since the variable terms in the mean-flow 
quantities are O(EU,), &/ax = O(EU,). Since the largest term in (u’v’) is of the same 
order as the wall shear stress, also ap(u’v’)/ay = O(u,2), and the perturbation in this 
term is still smaller. By similar arguments, it is found that all terms omitted in 
(2.1)-(2.3) are of higher order than eu,. It follows that in a first approximation the 
differential equations are the linearized inviscid-flow equations, with a vorticity 
perturbation in a form originally given by Sears (1950). 

The solutions for u,, and vuzl can be written in the form 

1 
u21 = - [ I +  (7 - 1) Jew1 UOl(YU)  + #x(z, Y ) 9  

%1 = UOl(YU) + # y b ,  Y), 

Pa1 = -7% #x(z, Y),  

BW 

where # is a perturbation potential which satisfies the wave equation 

B2, #xx-#,, = 0. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

It is assumed here, subject to later verification, that the term euTvZl should be 
required to satisfy the tangency condition as y+O. One boundary condition, then, 
is given a t  the surface, and the other is obtained from expansion of the shock-polar 

#,(x,O) = 0, (3.11) equation (2.7) : 

= - ( l + e M L ) u o l ( y ) .  2 - W w  
[& + Bcn #zlx ’ B ,  y B2, 2 

(3.12) 

The solution for p,, is easily found as 

There are of course two contributions to p, ,  at every point, associated with reflection 
of the shock wave at distances $(B-,’ z f y) + . . . from the surface. One disturbance 
arrives at (z, y) . along an incoming characteristic, the other along an outgoing 
characteristic after reflection from the surface. If M, > d 2 ,  the linear theory 
predicts that the reflected waves are compressions, whereas for Mw < 1/2 these waves 
would be expansions. At the approximate shock-wave location z = B ,  y the solution 
fails because the first term is logarithmically infinite. This difficulty is easily removed 
if Bw is replaced by a second approximation to the slope of the characteristics, with 
the shock-wave location likewise expressed by a second approximation. 

The assumption of a weak shock wave can be a significant source of error in the 
predicted pressure distributions at values of the parameters for which experimental 
data are available. This error is corrected below by means of a combined supersonic 
hypersonic approximation. 
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3.2. Hypersonic limit 
For high Mach numbers the flow can be studied in a hypersonic small-disturbance 
limit, defined by s-+O and M, -+ 00 with the hypersonic similarity parameter 

1 H = -  
M, €2 

(3.14) 

held fixed. The shock wave is now inclined at a shallow angle O(E) and is no longer 
weak. Disturbances in the flow behind the shock wave will overtake and be reflected 
from the shock, giving additional contributions to the surface pressure. The vorticity, 
however, is small enough that reflections of small disturbances within the boundary- 
layer region between the shock wave and the wall are found to be of higher order. 
It is assumed further that the relative change in Mach number, as well as in velocity, 
is small across the defect portion of the undisturbed boundary layer. Since the local 
Mach number M is found from W/W, = (u2+v2)/T,  the change in M I M ,  is 
O(M& u,). It is therefore specified that W, u,+O and, since M ,  E is held fixed in the 
hypersonic limit, that also u,/s2-+0 in this limit. 

The shock-wave relations (2.7)-(2.9) can be rewritten in the form 

(3.16) 

(3.17) 

(3.18) 

where the relation uu-us = us y;, from (2.9c), has been used to eliminate us. As in 
ordinary hypersonic small-disturbance theory, it is expected that the equations 
describing perturbations in v, p and p will have the same form as for unsteady 
one-dimensional flow. The perturbation in u does not appear in these equations. 

Since the shock-wave slope dy,/dx is O(s), the proper characteristic length in the 
flow direction is now 616 rather than 6. It is also convenient to choose a transverse 
coordinate measured relative to the surface. A suitable choice of variables is then 

53 = EX, y" = y-xtane. (3.19) 

The pressure is expanded in the form 

p = ql(€, M,)+u,jj2(53,y";s, M a ) +  .. ., (3.20) 

where 9, is the inviscid-flow pressure and u,jj2 is the largest correction due to the 
boundary layer. Expansions of the same form can be written for v and p. The terms 
PI and P 2  can be expanded as 

1 
jj1 = qll(H) + ... , j j 2  = pq21(53, y"; H )  + ... . (3.21) 

Similar representations can be written for Cl/e and C2/e and for P; and p"z. The 
shock-wave slope has the form 

y; = Sl(8, M,) + u, S2(53; E ,  M,)  + . . . , (3.22) 

where Sl = eZl1(H) + . . . . 
2-2 
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The largest terms are the familiar solutions for wedge flow: 

where 

Cl11=1, $ 1 1 = 1 + - - ,  Y%l P11=-- 311 

Sll - 1 ' H 
(3.23) 

g l - + ( Y + 1 ) 3 1 1 - H =  0. (3.24) 

The perturbations pZl, C21 and PZl satisfy linear differential equations of the same 

P 2 1 j . + P l l ~ Z l ? j  = 0, (3.25) 

form as for a one-dimensional unsteady flow : 

Expansion of the shock-wave relations gives 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

where pZl8 and CZls denote values a t  i j  = (gl1- l ) Z ,  and uol is evaluated at 
yu = y = Zll 2. The tangency condition a t  the surface requires Czl = 0 at ij = 0. 

The differential equations can be combined to show that each of Czl and p"zl satisfies 
a wave equation. If the tangency condition is satisfied, the solutions have the form 

(3.30) 

(3.31) 

where BzH = &/f i l l .  Substitution into the shock-wave relations leads to a functional 
equation for 3': 

CZl = f(? + Bij) -Y(Z - Bij), 
( Y f l l l W  $21 = -,M + Bij) -YW- m, 

where 

2%1 , m-g=- 
m+'=4311-(y+l) 2% 1 

(3.32) 

(3.33) 

Chu (1952) and Guiraud (1957) obtained equations similar to (3.32) by introducing 
small perturbations in surface slope for respectively supersonic flow past a thick 
wedge and hypersonic flow past a thin wedge. The ratio @1/m in (3.32) is small: if 
M ,  B =0 ,  &/m = 0;  if M ,  6-t co, &/m w -0.14 for y = 1.4; if M ,  B = and y = 1.4, 
g/m w -0.04. A solution for @l/m < 1 and /3 < 1 can be found as a series expansion 
in powers of &/R (Chu 1952 ; Guiraud 1957) : 

(3.34) 

The solutions for j521 and Czl follow directly. Because of repeated reflections from the 
shock wave and from the surface, each of the terms f(Z+&j) and f(Z-By") in the 
solutions depends on the values of uol at an infinite sequence of points along the shock 



Turbulent boundary-layer interaction with a shock wave 31 

wave. A good approximation, typically correct to within a few per cent, is found by 
retaining only the first term in f, thereby neglecting all reflections from the shock 
wave. 

It is convenient to rewrite the solutions in a combined supersonic-hypersonic form 
by generalizing Van Dyke's (1954) suggestion to the somewhat more complicated 
present case. This can be accomplished by replacing M ,  with B, in the equations 
defining H ,  S,, and 3,, and then proceeding in a manner appropriate for forming a 
uniformly valid composite solution from known inner and outer solutions. If additive 
composition is used for the terms independent of u, and multiplicative composition 
for terms proportional to u, (Van Dyke 1975), the result for the pressure is 

P = 13"11+€~11-yB,)+s2(p12-~(y+ 1)B2,1 

(3.35) 
2u, ML 

' ~ ~ ( 7 -  1 )  B6, 

where p, ,  and ple  are defined as before, but j3,, and gel (as well as Ell, 8, etc.) now 
are modified with M ,  everywhere replaced by B,, as already noted. The required 
properties of the combined solution are easily verified : the supersonic and hypersonic 
solutions are recovered respectively for M ,  E 4 1 and for M ,  % 1. 

If M ,  is close to one, the solution (3.35) of course does not remain correct, but 
must be replaced by a transonic approximation, as discussed in 53.3. It is also evident 
that (3.35) is not uniformly valid at small distances from the corner, where f 1 2 ,  
becomes logarithmically infinite. As 2 /8 -+0  and i j-+O with &/Z held fixed, 
substitution for $21 from (3.31) and (3.34), if only one term is retained in!, gives 

= ~ 8 @ , , { l n i j + ~ l n [ ( - - - ) l (  &l f:2-1)]-217}+ .... (3.36) 
1+P By 

It is found that the surface pressure obtained from (3.35) differs considerably from 
experimental results, with an error which increases as x decreases, as shown for two 
cases in figure 2 and 3. At distances so small that u,lng = O(l) ,  the mean velocity 
is no longer close to the external-flow value, and different expansions are needed. 
Modified solutions for small x and y are derived in $4, where comparisons with 
experiment are discussed in more detail. 

3.3. Transonic limit 

For low supersonic Mach numbers, solutions can be obtained in the transonic 
small-disturbance limit defined by E + O  and M ,  + 1 with (W, - 1)/& held fixed. The 
shock wave is weak and nearly normal, inclined a t  an angle O ( d )  from the y-direction. 
The characteristics have slopes of the same order, but the numerical coefficients are 
different, so that characteristics intersect the shock wave within the flow region of 
interest. It is assumed further that the velocity change of order u, across the defect 
portion of the boundary layer is small in comparison with W, - 1. It will therefore 
be specified that uJ(M2, - 1) + O  and, since (W, - 1)/& is held fixed in the transonic 
limit, that also u,/ei+O in this limit. 

The shock-wave shape is expressed in the form 

S(x,y) = 0 = x-x,(y). (3.37) 

The largest terms in the shock-polar equation (2.7) lead to the simpler transonic 

approximation u,-a* +I-)+..., u -a* 
2 a* a* 

(3.38) 
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which is sufficient for the orders of magnitude to be considered here. The coordinate 
x* and the similarity parameter K are defined by 

(3.39) 

The pressure is expanded in the form 

P-1 =P:(s,M,)+u,P:(”*,Y;s,~,)+... , (3.40) 

with similar expansions for u-a* and v. Then p:  and pz  are expanded as 

p:  =&p&(K)+ ..., ~ : = p : ~ ( x * , y ; K ) +  .... (3.41) 

Expansions of the same form can be written for u: and u Z ,  and for v:/d and v:/&. 
The shock-wave slope is 

x; = s~(e,M,)+u,s:(y;s,M,)+ ..., (3.42) 
where s: = ds,*,+ ... . 

The first terms in the solution describe an inviscid corner flow, and are found from 

-1 K K 
(3 .43~)  

Y + l  (Lq (” *) 2 
Y + l  y+l+u l l  =- y + l ’  (3.43 6) 

The velocity behind the shock wave is sonic if uF1 = 0, and the maximum flow 
deflection occurs for ur1 = -$K/(y+ 1) .  

It follows from the differential equations that uzl and vz1 can be expressed in terms 
of a perturbation potential #*, where uzl = uol+@z* and uz*, = #:, and that 4* 
satisfies a wave equation provided that B*2 = (y + 1)  > 0:  

B*’$,**,* - #&, = 0. 

From the shock-polar equation, 

(3.44) 

where ufl and vZ1 are evaluated at x* = y. The tangency condition at  the surface 
requires vZl = 0 at y = 0. Since pzlx* + yuZl2* = 0, and since pZ1 + yuzl = yuol at the 
shock wave, i t  is found that pZl = - ~$2.. 

The solution for #* that satisfies the tangency condition has the form 

$* =f*(x*-B*y)+f*(2*+B*y). (3.46) 

Substitution in the condition obtained from the shock-polar equation again gives a 
functional equation 

where now 
4B*s,*, K *+&* = - $ = -  N y + l , N*-&*=~u,*,+-  

B* * 
s:1 ’ y + l .  

(3.47) 

(3.48) 
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Equation (3.47) has the same form as (3.32), and I&*/N*I < 1,  so that the solution 
has the same form as the solution (3.34). As B*+O, however, I&*/N*I+l, and at 
B* = 0 the series diverges. The solution for B* = 0 can be found directly from the 
functional equation (3.47) asf*’(x*) = uol{Kx*/(y+ 1)).  It is also possible (Agrawal 
1983) to form a combined supersonic-transonic expansion which reduces to  (3.1) in 
the supersonic limit and to (3.40) in the transonic limit. 

4. The flow close to the corner 
4.1. Intermediate solutions 

The outer solutions describe small perturbations from a uniform external flow, and 
therefore cannot be expected to describe the flow a t  points close to the corner where 
the velocity differs appreciably from the external-flow value. Since the upstream 
velocity is a function of u, In y, the variation in u becomes important at values of 
y small enough that u,lny is no longer small. If also x is small, such that z and y 
are of the same order of magnitude, suitable coordinates are x/y and either u,ln y 
or ur In x. For calculation of surface pressures near the corner it appears slightly easier 
to choose u, lnx, as done by Messiter (1980); a factor B, = (Po- l);, where Ma is a 
local Mach number, is also included. Coordinates u and A are then defined by 

1 X X 
u = -u,ln-, h = - 

K Bo B o y 7  
where 

B, = (Mi- -  I$, Ma = -, UO 
a, 

(4.2) 

and a, is a non-dimensional sound speed calculated from (2.4) with a2 = TIM& and 
u = U,. The velocity U, is an approximation to (2.15), found by expanding uol for 
small y, setting K - ~ u ,  In y = u- K - ~ u ,  In A, and retaining only terms of order one : 

u,(u) = r s i n  (4.3) 

Solutions are now sought in terms of perturbations about a flow with speed u = U,. 
Sonic velocity corresponds to  a value r = ua defined by setting U,  = a*. For 
1 < Ma < M,, and therefore ua < u < 0, the pressure can be expanded in the form 

p-1 = P,(u;€)+u,P,(u,A;€)+ ... . (4.4) 

As in the model problem considered by Bush (1971), the change of variable allows 
the intermediate solution to  be obtained as a limit-process expansion, for u and A 
held fixed as u,+O. If also e+O, the expansion of & has the same form as the 
expansion (3.2) ofp,, and the solutions are the same as the solutions (3.3) except that 
now M ,  is replaced by Ma and B ,  by B,. Similarly, u-u, and v can be expanded 
in the form (4.4). For small E ,  pZ = e e l  + ..., with similar expansions for U ,  and V,. 
The largest terms in U,/ U,  and VJ U, are found to give U1J U ,  = - 1/Bo7 VJ U ,  = 1 ,  
U,,/U, = - P,,/yM& and V,, /U,  = - l /B , .  These results are consistent with the 
differential equations and boundary conditions to the proper order, and of course 
remain correct as u + 0 and U, --f 1.  

Substitution of the expansions for p ,  u and v into the differential equations (2.2), 



34 

(2.3) and (2.5) then 
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gives a set of three linear differential equations for PZl, U,, and 

1 h 1 
UZ1A+-U;,+- KlA+-U; = 0. 

Kh BO KBO 

It is seen that u enters only as a parameter, and so these are ordinary differential 
equations in A. For any value of g, the definition (4.1) implies that the reference length 
for x and y is d(u) = exp ( K U / U ~ ) .  If x = O(d) and y = O(d), the velocity is close to 
Uo(a)  and the shock wave is nearly plane. One might also note that the vorticity is 
v X Y  -u = - K - , U ~ / Y + .  .. , and so a similarity argument could have been used to show, 
for a given u, that the flow perturbations Pzl, U,,, and V,, depend only on the 
similarity variable h = x/Boy. If a tangency condition is assumed at the surface, 
again subject to later verification, then as A+ co 

The shock-wave relations give 

1 1 
-P +-u2,=---- ” { l+(~- l l )M~}( lnh,+217) ,  (4.10) 
yM;4 21 Uo KBO uo 

where A, = l + O ( s ) .  Solution of the system (4.5)-(4.10) gives, eventually, 

The range of validity of these intermediate solutions can be extended by some 
rather simple modifications. If K-’{ln (z Boy) - In 2B0 - 2n) is replaced by 
uol{(x+Boy)/2Bo},  the term (4.11) remains correct when y = O(1). That is, the 
modified expression contains both the outer and the intermediate solutions. Next, 
hypersonic as well as supersonic limits can be included if the derivations of this section 
are repeated for hypersonic intermediate limits such that Mos = O(1).  A single 
expression for the pressure can then be written for all Mo such that @- 1 9 si and 
M;4u7 -4 1.  The result, obtained using the procedure already described, is 

I, = 81 +s(Pl1 -Y&) +s2{P,2 - b ( y  + 1 )  Bt} + . . . 
Y-1 2u7pz1 ]+ ..., (4.12) +- x B4, uo (N;- 2) (1 +?Mt) { -yB0 pll a+ (y -  1 )  E’B: 

where B: = M:- 1 and 

(4.13) 

(4.14) 
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(4.15) 

(4.17) 

(4.18) 

Equation (4.12) is a composite solution which remains correct in the outer and 
intermediate supersonic and hypersonic limits defined above. For numerical calcula- 
tions, uol can be approximated by (2.11). When x > B,, values Mo > M ,  can be 
avoided by setting CT = 0; the effect is to replace (4.12) with the outer solution (3.35). 

4.2. Comparisons with experiment 

Numerical results for the surface pressure have been calculated for some of the cases 
studied by Roshko & Thomke (1969). The pressure obtained from (4.12) is plotted 
in figure 2 for M ,  = 4.92, E x 15", and u, = 0.017, and in figure 3 for M ,  = 3.93, 
E z 15", and u, = 0.018. The agreement with the experimental data is seen to be very 
good, with a typical error in pressure of less than 2 % for M ,  x 5 and perhaps 3 % 
for M ,  z 4. Roshko & Thomke (1969) and Rosen et al. (1981) have also shown 
numerical solutions obtained by the method of characteristics for M ,  = 3.93. Since 
the numerical solutions are almost coincident with the data, the theoretical and 
numerical solutions are likewise in very close agreemefit. The combined supersonic- 
hypersonic outer solution (3.35), indicated by dashed lines in figures 2 and 3, is seen 
to be accurate near the end of the pressure rise, but shows an increasing error as x 
decreases, and so is clearly not satisfactory. The solutions (3.35) and (4.12) approach 
the inviscid-flow value in an oscillatory manner, with maximum overshoot of roughly 
2 yo of the overall pressure rise in figure 2 or figure 3, a t  larger values of x than are 
shown in the figures. This effect is associated with the sign change which occurs when 
a weak pressure disturbance overtakes and is reflected from the shock wave, and is 
very small because the reflected disturbances are considerably weaker than the 
incident disturbances, as can be seen from (3.34) since I&{/Nis small. The experimental 
data show a larger overshoot of perhaps between 4 and S%,  and the theoretical 
solution thus does not completely account for this effect. It seems possible that a small 
error would arise because the neglected decrease in Mach number with decreasing y 
would tend to amplify the small pressure overshoot. The needed correction might then 
appear in higher-order terms of the expansions, but it is not clear that this is the only 
important omitted contribution to the overshoot. 

Thus the relatively simple analytical result (4.12) successfully duplicates results 
obtained by numerical integration, and now no assumption is needed about a proper 
starting point for the calculation. The numerical solution of Roshko & Thomke (1969), 
on the other hand, required introduction of an empirically determined slip Mach 
number. Similarly, Rosen et al. (1981) carried out a characteristics calculation with 
the starting value obtained by use of an integral method. The present results, 
however, still do not include a prediction of the observed very steep initial part of 
the pressure rise. 

Equation (4.12) can be shown to predict a minimum in the surface pressure, a t  a 
value of Mo which depends on the parameters and which corresponds to a location 
too close to the corner to be shown conveniently in figures 2 and 3. For still smaller 
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FIGURE 2. Wall pressure for M ,  = 4.92, B = 14.86', u, = 0.01658: -, calculated from (4.12); 
___  , calculated from (3.35); +, experimental data (Roshko & Thomke 1969). 

values of M,, (4.12) clearly is no longer correct, and must be replaced by a transonic 
approximation. If M o + i ,  and therefore B,+O, (4.12) gives 

(4.19) 

As in ordinary transonic small-disturbance theory, a different solution is needed when 
M,- 1 = O(d) .  Some of the details are shown in the Appendix, with the assumption 
that the turning angle at  the shock wave remains equal to 8 in the first approximation. 
This formulation permits subsonic velocity behind the shock wave, but fails when 
M,  is too close to the detachment value M,, the minimum value for which an 
oblique shock wave can turn the flow through an angle B .  If the turning angle a t  the 
shock wave remains nearly equal to E at even smaller distances, it is found that still 
another solution is required when M , - M ,  = O(d$), where x = u,/& 4 1 .  The 
corresponding solution is discussed briefly in the Appendix. Finally, the formulation 
which would describe detachment of the shock wave corresponds to a limit such that 
M,-Ma = O(u,), as also noted in the Appendix. 

A solution describing detachment would, however, predict a maximum pressure 
at least as large as the pressure behind a normal shock wave at M ,  = M,, whereas 
for 3 5 M o  5 5 no such behaviour is observed experimentally. A different possibility 
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FIQURE 3. Wall pressure for M ,  = 3.93, E = 15.06", u, = 0.01844: -, calculated from (4.12); 
--- , calculated from (3.35); +, experimental data (Roshko & Thomke 1969). 

is a shock wave which is everywhere oblique and which is formed by coalescence of 
compression waves arising through interaction with a sublayer, at  points very close 
to the corner, in a manner which has not been properly recognized here. It also seems 
likely that fluctuations in shock-wave location and shape could have a considerable 
smoothing effect on the local mean surface pressure. The importance of these 
intermittency effects has recently been demonstrated by Dolling & Murphy (1983) 
for a case with separation, and somewhat smaller effects would presumably be present 
for the cases of figures 2 and 3. Moreover, as argued below, a very small region of 
reversed mean flow may have been present in each of these latter cases. 

Attempts at detecting incipient separation have been made by a variety of 
techniques, with results which have sometimes appeared contradictory. In  particular, 
surface-flow studies (e.g. Appels & Richards 1975) have identified regions of reversed 
mean flow considerably smaller than are recognized by most other methods. Roshko 
and Thomke (1976) defined an interaction length 1 for separated flows as the distance 
upstream from the corner to the intersection of a tangent drawn a t  the inflection point 
of the wall-pressure curve with the x-axis, and suggested an empirical formula for 
1 as a function of e and u,, independent of M,.  They noted that incipient separation 
detected by liquid-line observations corresponds to a value 1 x 0.18. For example, 
if u, = 0.022, as in one of the tests carried out for e = 10' and M ,  = 2.95, inversion 
of the expression for 1 gives e x 14.5", somewhat larger than the actual value in the 
experiment,. If instead the values E = 10' and u, = 0.022 are specified, one finds 
1 z 0.018, and the region of reversed mean flow would then have length somewhat 
larger than 0.018. For comparison, according to formulas given earlier, in this case 
the upstream wall-layer thickness was 8+ x 0.000048, and the distance from the wall 
to the sonic line was about 0.00088 ahead of the shock wave and 0.0098 just 
downstream; the reference length in the flow direction is smaller than this last value 
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by a factor O ( d ) ,  whereas the estimated value of 1 is larger. The presence of this 
small-scale separation therefore appears to imply that inviscid-flow solutions for M,, 
near one may have to be coupled with a description of the small region of reversed 
mean flow. 

The data of Roshko & Thomke (1969) for M ,  x 3 have the same form as for 
M ,  e 4 and 5 (figures 2 and 3), but the predicted pressure is now found to be too low 
by about 8 % of the absolute pressure or about 13 % of the pressure increase. Their 
measured pressure distributions for M ,  x 2.0, however, show quite different 
behaviour. The pressure rises rapidly to a maximum, well above the inviscid-flow 
value, a t  a point quite close to the corner, and then shows a gradual decrease; for 
E x 5' or lo', the separation bubble again appears to remain very small. The present 
solution (4.12) would instead predict a pressure below the final inviscid-flow value 
in most of the boundary layer. The predicted trend would be reversed only a t  still lower 
Mach numbers, as a result of the factor q - 2  in (4.12). The reasons for these 
discrepancies are not yet understood. 

5. Sublayer solutions 
5.1. Formulation of sublayer problem 

In  principle the asymptotic flow description can be carried further to allow calculation 
of changes in the wall shear stress 7, from the upstream value 7, = u," (e.g. Melnik 
& Grossman 1974; Adamson & Liou 1980; Sykes 1980). The situation is, however, 
less satisfying than for the pressure calculation, because eventually an assumption 
regarding the form of the Reynolds stress is needed, and because fewer experimental 
data are available for comparison. As a first step, the problem of calculating 7, can 
be partially formulated, with no choice yet made for a closure condition. 

The largest terms in the ' outer ' solutions given earlier are derived from inviscid-flow 
equations, which do not contain enough information for calculation of changes in the 
wall shear stress. The flow details must also be studied in a sublayer where the changes 
in turbulent stresses are important. This sublayer plays the role of a new, thinner 
boundary layer, in an inviscid rotational external flow described by the outer 
solutions. From a different view, the Reynolds stress in the very thin wall layer is 
nearly in equilibrium with the local value of the wall shear stress, and cannot be 
expected to match with the Reynolds stress in the outer part of the boundary layer, 
which depends primarily on upstream history. Instead, the perturbations in the 
wall-layer solution and in the outer solution are to be matched with the perturbations 
in the sublayer. This sublayer has been called a 'Reynolds-stress sublayer' (Adamson 
& Feo 1975) or a 'blending layer' (Melnik & Grossman 1974). 

In  the wall layer y = O(S+/S), where Sf is defined by (2.12), and the pressure 
gradient dp/dx = O(su,), as in the outer part of the boundary layer where y = O(1). 
Since the velocity u remains O(u,) and x = O ( l ) ,  the acceleration uu, = O(u,"). The 
terms representing effects of laminar and turbulent shear stresses are, however, 
O(u,"S/S+), which is much larger, and so the momentum equation again expresses a 
balance between these two terms, with the coordinate x appearing as a parameter. 
Just as in the undisturbed boundary layer, the flow variables depend on local values 
of the wall-layer thickness and the non-dimensional friction velocity, now given 
respectively by S+u,/(7,pw)2 and (7,/p,)i. A suitable wall-layer coordinate down- 
stream of the corner is then . .  
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The mean-velocity profile obtained from (2.14) for large y+ becomes 

u = r s i n { ~ f ( ~ ) ' ( ~ l n y + + c ) ~ .  

Equation (5.2) differs from the corresponding undisturbed profile only in the 
replacement of u, by (7,/pw)i. The dependence of the temperature and density on 
y+ does not appear in the first approximation to the wall-layer momentum equation, 
and so the integration constant c has the same value as for a constant-density flow 
(e.g. Melnik & Grossman 1974). 

In terms of a sublayer coordinate Q the expanded wall-layer solution (5.2) becomes 

where 

(5.4) 

Q = ( y  - E X )  a/$, (5.5) 

r 1 
C ,  = sin-l - r' 

and 8 is still to be determined. The sublayer solution for u is to be derived in terms 
of coordinates x and Q. When evaluated as @-+O this solution must agree with the 
solution (5.3), and the expansion as 9 -+ m must match with the expansion of the outer 
solution as y + 0. 

The matching conditions and the differential equations suggest an expansion of u 
in the form 

where now u, = 1 +u, COl + . . . and 

u-u, = ii1(e, M,)  + u, 9; 8,  M,,  In (6/8)) + . . . , (5.7) 

The terms shown in (5.8) for til are the same as obtained in the outer solution. For 
conciseness the dependence on In (&/if) is included in d2 rather than written separately. 
Similar expansions are found for v ,  p-1, and p-p,. The orders of magnitude 
appearing in the expansion of 7,, and therefore also in the shear stress away from 
the wall, are determined from the matching of the solutions (5.3) and (5.7) for u. The 
shear stress is thereby found to have the form 

(5.10) 

= 1 + 8TI1 4- E2T12 . . . + u, 8TZ1 -k . . . . (5.11) 

When evaluated at  Q = 0, (5.11) becomes the expansion for 7,. If the expansions for 
p ,  and 7, are substituted in (5.3) and the result compared with (5.7) and (5 .8) ,  the 
largest perturbation in 7, is easily seen to be ~B-,l(yM2,-2/C,). Thus 
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7,,(x, 0) = B-,’(yM, -2 /C, ) .  The term of order e2 is likewise constant and is found 
in the same way. These terms in rw can therefore be obtained without prior derivation 
of a new solution for the sublayer. The term of order eu,ln ( $ c f / / s )  in (5.3) is, however, 
different from the corresponding term in the expansion of the outer solution as y+O, 
and now a sublayer solution is required. 

If the pressure gradient and shear stress are both to appear in the first approximation 
to the sublayer momentum equation, it follows that the sublayer thickness is 
cf  = O(u,S); it  is sufficient to set 8 = u7S. Then @219 = 0 and 

1 
U Z I X  = -- yMe,f j21x+~11~> (5.12) 

where @,, = p,,(x, 0) from matching with the outer solution. Since it can be shown 
from the continuity equation that a,,, = dii,,/dg, and the tangency condition 
requires tJ21-iiol+0 as g + O ,  it  is found that a,, = ii,,($). This term, however, does 
not contribute to the streamline slope w/u. The variable term in v/u is O(eu,2), and 
the corresponding displacement effect of the sublayer does not influence the larger 
terms calculated in the outer solution. In  particular, it follows that the tangency 
condition in the form (3.11) does provide a correct boundary condition. 

The matching condition for u as g -+ co suggests expressing ii21 by 

where 
ii, = 711, 

(5.13) 

(5.14) 

and d+O as g+ 00. Also rll(x, 0) = B;l(yP, -2 /C , ) ,  as already noted. The outer 
solution with uol replaced by O,, can be shown to remain correct when x = 0(8/S) 
and y = 0(8/&). As x+O, then, the solution for u must match with the rewritten outer 
solution, which in turn satisfies the proper shock-wave relations. The initial condition 
for ii in (5.14) is therefore found to be i i + O  as x+O. Similarly, the solution a,, = iiol 
matches correctly as x+O. 

5.2. Approximate calculation of wall shear stress 
It is only at this point that a representation of the changes in turbulent shear stresses 
is required. Only the simplest possibility, the mixing-length description (2.14), is 
considered here. For this choice an analytical solution can be obtained and the 
possibility of at least qualitative agreement with experimental results can be 
demonstrated with a minimum of effort. 

Expansion of (2.14) gives 7,, = 2 ~ ( g i i ~ , ~ ) ,  which leads to the proper form for 4 as 
g + O  and gives i i + O  as g-+ 03. The change in T ~ ,  across the sublayer influences the 
change in 4,, as g + O ,  which in turn affects the term r2, at the wall. Since 
 constant as $+O, it  can be seen that the differential equations and matching 
conditions are satisfied by a self-similar solution of the form ii = f ( g / x ) .  The result 
that satisfies all the proper conditions is 

(5.15) 

The sublayer velocity (5.7) can now be expanded as $ + O  and compared term by 
term with the expansion (5.3) of the wall-layer velocity, with p ,  replaced by the 
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solution (3.1) evaluated as y + 0. After some algebra, the first few terms in 7, are found 
as 

0 
L 

(5.16 a)  

(5.16 b )  

~ ( y , + 2 1 7 - h 2 ~ ~ , ~ )  +... , (5 .16~)  1 
where ye = 0.577.. . is the Euler constant; pll and p,, are given by (3.3). 

At least three possibilities for improvement of the solution for 7, can easily be 
recognized. Modification, can be derived to  allow application at smaller values of x 
and at higher Mach numbt w, and a more detailed description of the turbulent shear 
stress, perhaps along the lines proposed by Melnik & Grossman (1974) or by Sykes 
(1980), might be attempted. Thus far only the first of these extensions has been 
carried out, by the use of intermediate solutions for smaller values of x. 

For very small distances from the corner, the momentum equation expresses a 
balance of inertia, pressure and Reynolds-stress terms, as in (5.12), when 9 = O(x). 
Thus the sublayer thickness defined in this way decreases as x+O. Again with the 
use of the mixing-length approximation, the term proportional to  EU, in u is found 
to depend on IJ, g/x and lnu,. The result for u is 

+ U T E - - -  K?o( l+-il!q+&) 

where 
r U 

l- u, = U , ( ~ ~ ) - ( ~ , / ~ ) ( l n h - 2 1 7 )  U i ( c ) +  ... and C, = % s i n - l L .  (5.18) 

Also el is the value of P,, obtained as A + CQ. Equation (5.17) matches properly with 
the inviscid-flow intermediate solution as $+CQ and matches with the sublayer 
solution (5.7) as u+O. 

The expansion of the wall-layer solution for large y+ is 

-tUo(Tw-l)Cg 
U, PC 

+ 2 { U ; - -  UoCo(T,- l))(&- 1 U i l n T +  7, P w  .... (5.19) 
K U, PC u, 

Comparison of (5.17) and (5.19) then yields an intermediate expansion for 7, when 
x is sma 1, such that 6, < u < 0, in the form 

5 ,  1 +ql, + q2, + . . . + u, E q l w  + . . . , (5.20) 
u," 
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where T,, and T,, depend on CT, and T,, also depends on @/x and on In u,; the subscript 
w refers to values a t  the wall. 

As for the calculation of the pressure, it is desirable to combine the results in a 
composite solution which is correct for x = O( 1 )  and for small x, provided again that 
CT--a, >> 8, where C T ~  is defined as before by U,(CT,) = a*. It turns out that a simple 
modification of the intermediate solution suffices, with a factor ~ - ~ ( 2 f 7 + 1 n  2 )  
replaced by - uol(ix/Bo) + CT/U, .  The first few terms in the expansion (5 .20)  a t  @ = 0 
are 

(5.21) 

(5.22) 

where ye is again the Euler constant. To see that the outer solution for 7, is recovered 
as a + O ,  it  is necessary to expand T,,, as ~ ~ - 2 0 .  It can be shown that the second term 
combines with other terms in a manner that yields the required form. 

The composite solution for T, is compared in figure 4 with experimental data of 
Settles, Fitzpatrick & Bogdonoff (1979) for 8 = 8", M ,  = 2.85 and u, = 0.023. The 
trend is predicted quite well, but the theoretical curve is about 20% too high. At 
values of x small enough that CT is close to the detachment value C T ~ ,  the solution 
requires still further modification. Since T, = 1 ahead of the corner, the value of T, 

must have a minimum. It appears that prediction of this minimum would require 
proper completion of the inviscid-flow solution very close to the corner, perhaps with 
the added effect of a very small separation bubble. 

6. Concluding remarks 
Close agreement of predicted and measured mean surface pressures has been 

demonstrated in particular cases, a t  M ,  w 4 and M ,  w 5 with 6 x 15". The predicted 
values are based on analytical inviscid-flow solutions which describe small perturb- 
ations from a basic rotational wedge flow, with the undisturbed boundary layer 
characterized by a compressible-flow form of the velocity-defect law and the law of 
the wall. The solutions are obtained as the first terms in asymptotic expansions for 
small values of the non-dimensional friction velocity and the corner angle. For 
satisfactory accuracy it is found that a uniform flow is not adequate as a choice for 
the basic flow, but that a suitably improved representation can be achieved with the 
help of a hypersonic limit and appropriate intermediate limits. Fair agreement of the 
pressures is also obtained for a case with M ,  w 3 and E rz loo. 

The pressure calculations do not require any knowledge of the local changes in 
Reynolds stresses, and do not require introduction of an effective ' slip ' Mach number 
at the wall. Partial solutions have also been derived at small distances from the corner 
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FIQURE 4. Wall shear stress for M ,  = 2.85, 6 = 8 O ,  u, = 0.02345: -, calculated from (5.20); 
+ , experimental data (Settles et al. 1979). 

such that the local Mach number is close to one. In the numerical examples 
considered, however, it appears that a very small region.of reversed mean flow may 
have an appreciable effect for these lengthscales. The strong overshoot and 
subsequent gradual decrease in pressure which has been observed experimentally at 
M ,  x 2 are still unexplained. 

Calculation of changes in the wall shear stress requires matching a wall-layer 
solution with a solution to the boundary-layer momentum equation in a sublayer. 
A mixing-length model is found to give qualitative agreement with one set of 
experimental data. While this agreement seems encouraging, additional comparisons 
are needed, and better turbulence models should be considered, before a judgement 
can be made about the accuracy that might be expected for shear-stress distributions 
derived within the framework of the asymptotic theory. 

This work was sponsored in part by the Office of Naval Research, Contract 
N00014-79-C-0285, NR 094-395 ; this support is gratefully acknowledged. 

Appendix 

An expansion for u can be written in terms of variables u* and A* : 
When u is close to u,, where Uo(a,) = a*, different forms of expansion are needed. 

u--a* = du;E,(a*)+ ... +u, U,*,(a*,h*)+ ... . (A 2) 

The expansion for v / d  has the same form. Differential equations for U,*, and V,*, found 
from (2.5), (2.2) and (2.3) are 

(A 3) 
1 

Kh*  
B,*2U2*lA*+h*Vz*lA* = -- BZ2 u,*,,* 7 
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where BZ2 = (y+  1) U&/a*. The shock-polar equation gives 

S .  Agrawal and A .  F .  Meaaiter 

(A 5 )  
2 

( M ,  ~ * a *  - U,*,)2 ( M ,  U*C* + UT1) = - ?+ 1 

4a*2 v,: + (3U;r, + M ,  a*a*) Uz, 
( y + l ) ( M , a * a * - U T l )  

1 
= --M,a*(U,*,+3N,a*a*) (lnA*+2n) (A 6) 

K 

at A* = A,*, where the equation for the shock-wave slope gives 

The solution for U,., is 
A,* = a* / (M,  a*a*- U,*,). 

(?a*), (A 71 
2 ~ * ~  IB,*21i (M,a*-dU&/da*) 

(y  f 1) ( UT1 - M ,  a*a*) (3  u,: + M ,  a*a*) + 

where for BZ2 > 0 G(g*)  = ln- 
A,* - B: 
h,*+B,* 

It is seen that U&+m when 3U,*,+M,a*a*+O, i.e., when 
g*+a: = 3 ( y +  1)-$2-*/M,. Still another solution is needed when a*-a; = O(xf), 
where x = uT/d + 1. In terms of variables 3 = (a*-a,*)/xt and A*,  expansions for 
u and w have the form 

u = u * + e ( U l l + ~ ~ ~ 2 1 + ~ i 7 3 1 ) +  ... , 
w = e(a*+xiKl)+ ... , 

(A 8) 

(A 9) 

where Ull = -$Mm a*az and i721 = U21(3). The differential equations for U31 and V3, 
are 

(A 10) 

( A l l )  

- -  1 - -  
(y + l) ull U31h* KIA* = - (7 + l) ull ui17 

Klh* + A* i731h* = 0. 

The shock-polar equation gives 

The solution for is proportional to ql : 

Substitution in the shock-polar equation (A 13),  with A* = 2- f ( y+  1): a t  the shock 
wave, leads to a Riccati equation for U21. The solution is 

("">: Air ( b 3 )  
iT21=-%*M, - - 

b Ai(b3) ' 

where Fj8 = 6n-l ~(a,*)-t and Ai is the Airy function. 
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The solution (A 14) is bounded for 5 > 0, but Ai (b5  is oscillatory for 5 < 0, the 
first zero occurring at 5 = 5,, where b5,  x -2.34. The term $uZl is no longer small 
in comparison with gll when 5-5, = o(xi), i.e. when (7-ud = O(u,), where 
U d  = ua + eb; + .d 4 5,. This condition is equivalent to the condition that a nonlinear 
differential equation be obtained in the first approximation. Then U,(u,) provides 
a three-term approximation to  the upstream velocity u,, defined by (2.15), a t  the 
location y = yd where shock-wave detachment occurs. In a limit with y/yd and 
E-&-c/yd held fixed, the first approximation is described by the nonlinear transonic 
small-disturbance equations. The shock wave is detached, and as y/yd -+ co the slope 
approaches that for an oblique shock wave which turns the flow through an angle 
B at a Mach number M,,(ud). The flow problem is easily formulated in the subsonic 
part of the hodograph plane, but, as noted in 54.2, may not be relevant for typical 
numerical values of the parameters. 

R E F E R E N C E S  

ADAMSON, T. C. 1976 The structure of shock wave-boundary layer interactions in transonic flow. 
In Symposium Tranesonicum IZ (ed. K. Oswatitsch & D. Rues), pp. 244-251. Springer. 

ADAMSON, T. C. & FEO, A. 1975 Interaction between a shock wave and a turbulent boundary layer 
in transonic flow. SZAM J. Appl. Math.  29, 121-145. 

ADAMSON, T. C. & LIOU, M. S. 1980 Interaction between a normal shock wave and a turbulent 
boundary layer at high transonic speeds. Part 11: Wall shear stress. 2. angew. Math. Phys. 3 1 ,  
227-246; also NASA CR 3194. 

AQRAWAL, S. 1983 Asymptotic theory of an unseparated supersonic turbulent boundary layer at 
a compression corner. Ph.D. thesis, University of Michigan, Ann Arbor. 

APPELS, C. & RICHARDS, B. E. 1975 Incipient separation of a compressible turbulent boundary 
layer. AGARD CP 168, Paper 21. 

BUSH, W. B. 1971 On the Lagerstrom mathematical model for viscous flow at low Reynolds 
number. SIAM J. Appl. Maths 20, 279-287. 

CHU, B. T. 1952 On weak interaction of strong shock and Mach waves generated downstream of 
the shock. J. Aero. Sci. 19, 433446. 

DOLLINQ, D. S. & MURPHY, M. T. 1983 Unsteadiness of the separation shock wave structure in 
a supersonic compression ramp flowfield. AIAA J. 21, 1628-1634. 

ELFSTROM, G. M. 1972 Turbulent hypersonic flow at a wedge-compression corner. J. Fluid Mech. 

GUIRAUD, J. P. 1957 ficoulements hypersoniques infiniment voisins de 1’6coulement sur un dikdre. 
C.R. Acad. Sci. Paris 244, 2281-2284. 

MAISE, G. & MCDONALD, H. 1968 Mixing length and kinematic eddy viscosity in a compressible 
boundary layer. AZAA J. 6, 73-80. 

MELNIK, R. E. 1981 Turbulent interactions on airfoils at transonic speeds - recent developments. 
AGARD CP 291, Paper 10. 

MELNIK, R. E. & GROSSMAN, B. 1974 Analysis of the interaction of a weak normal shock wave 
with a turbulent boundary layer. AIAA Paper 74-598. 

MESSITER, A. F. 1980 Interaction between a normal shock wave and a turbulent boundary layer 
at high transonic speeds. Part I: Pressure distribution. 2. angew. Math. Phys. 31, 204-226; 
also (with appendices) NASA CR 3194. 

ROSEN, R., ROSHKO, A. & PAVISH, D. L. 1980 A two-layer calculation for the initial interactiori 
region of an unseparated supersonic turbulent boundary layer with a ramp. AZAA Paper 

ROSHKO, A. & THOMKE, G. J. 1969 Supersonic turbulent boundary-layer interaction with a 
compression corner a t  very high Reynolds number. In  Proc. ARL Symp. on Viscous Interaction 
Phenomena in Supersonic and Hypersonic Flow, pp. 109-138. University of Dayton Press, 
Dayton, Ohio. 

53, 113-127. 

80-0135. 



46 

ROSHKO, A. &, THOMKE, G. J. 1976 Flare-induced separation lengths in supersonic turbulent 

SEARS, W. R. 1950 The linear-perturbation theory for rotational flow. J. Maths & Phys. 28, 

SETTLES, G .  S., FITZPATRICK, T. J. 6 BOGDONOFF, S. M. 1979 Detailed study of attached and 
separated compression corner flowfields in high Reynolds number supersonic flow. AIAA J. 
17, 579-585. 

SYKES, R. I. 1980 An asymptotic theory of incompressible turbulent boundary-layer flow over 
a small hump. J. Fluid Mech. 101, 647-670. 

VAN DRIEST, E. R. 1951 Turbulent boundarylayerin compressible fluids. J. Aero. Sci. 18, 145-160. 
VAN DYKE, M. D. 1954 A study of hypersonic small-disturbance theory. NACA TN 3173. 
VAN DYKE, M. D. 1975 Perturbation Methods in Fluid Mechanics. Parabolic. 

S. Agrawal and A .  F .  Messiter 

boundary layers. AIAA J. 14, 873-879. 

268-271. 


